![]() Last week I broke down some of the nuts and bolts behind genetics studies, explaining what a microsatellite is and why they are useful for genetics studies. If that seemed confusing or uninteresting, stick with me! That information, while important and useful, isn’t required to understand what I’m doing. What is important is an appreciation that genetics can tell us a lot about how we should manage our fish populations, and for the next several posts I’ll be delving into some of the reasons genetics studies are so informative. Let’s start with a thought exercise. You are a fish manager tasked with creating a conservation plan for a threatened fish species that is found in only one river in the United States. Populations of this species are currently isolated from one another by dams, and habitat is significantly reduced from historic conditions. Generally speaking, biologist cringe when they hear this, particularly at the phase ‘population isolation.’ Higher connectivity among populations generally means higher genetic diversity, which usually results in healthier, more stable populations (we’ll dive into those details later…for now just trust me). So, your gut reaction to this problem might seem easy - remove the dams, restore the habitat. But, wait! Before you say ‘down with the dams!’, you need to consider nonnative species. Restoring connectivity for native fishes will also increase connectivity among populations of nonnative species, thereby improving the health of their populations as well. It will also likely allow nonnative species to invade new habitats were they could compete with, and potentially extirpate, populations of the threatened species you are fighting to restore. So what do you do? Do you try to improve connectivity knowing it could increase the abundance of nonnative fish, but potentially improve health of native fish? Or, do you leave things as-is knowing native fish population may be declining, but at least they are protected from nonnative species? Before you make a decision, you may decide you need a better picture of how healthy native fish populations are. This is a scenario often faced in fisheries management, and one that genetics can help resolve. And, this is exactly what scientists out west did with populations of Oregon chub, a fairly small minnow species that is only found in the Willamette River in Oregon (to read the full paper, click here). Construction of flood control dams and introduction of nonnative species, particularly sunfish and catfish, severally reduced populations and restricted them to isolated areas within the river. Through significant effort, populations of Oregon chub have been showing signs of improvement, and the species was even downgraded from endangered to threatened on the Endangered Species Act. But, populations size isn’t always indicative of long-term stability (as we’ll discuss below), and appropriate next steps for management were uncertain. Enter genetics. Biologists collected tissue samples (in the form of a small portion of the caudal fin, which is not harmful and grows back) and ran analyses to determine how genetically different each population was from one another and how genetically stable each population was. The result? Though most populations of Oregon chub were isolated from one another and were genetically different, most still maintained high genetic diversity. And, most populations still had a lot of adults reproducing, which indicates genetic diversity will likely remain high into the future. So, though genetics are not a definitive measure of fish health, the study did indicate that most populations were likely healthy and stable into the near future. So, as a manager, you let out a sigh of relief. You dodged a huge bullet. Restoring population connectivity, which seems like it’s the right thing to do, would have probably been one of the worst things you could have done. In addition to the cost, benefits to Oregon chub would have been negated by the introduction of nonnative fish which would have reduced population sizes. And, you wouldn’t have known any of that if it wasn’t for genetics suggesting current populations were healthy.
The study also highlighted another important fact. Numbers can be deceiving, and a population that has a lot of individuals isn’t necessarily healthy. One of the largest populations of Oregon chub had the lowest genetic diversity. Why does this matter? Well, one of the recovery strategies for Oregon chub involves creating new populations by taking individuals from one population and putting them in an area of river with good habitat that is currently unoccupied (a practice we call “translocating”). Normally, you take individuals from strong, stable populations, and without genetics you assume population size is a proxy for health. But, that’s not always the case, and translocating individuals from an unhealthy population with low genetic diversity could be setting them up to fail in their new environment. Genetics also helps identify the correct scale of management. For example, should each stream be managed differently. What about river? Or entire watersheds? Maybe the state of Pennsylvania? You want to manage the largest area possible because it’s cost effective and easier. But, threats affect fish differently at different locations. And, these affects are usually species-specific. So, there’s no easy answer as to what the scale of fisheries management should be, but genetics can help guide the choice. But, I’ll save that topic for next time as it directly relates to trout management and some of the results we are finding in our studies.
1 Comment
2/10/2020 08:31:44 pm
The point is popular for having a prime sturgeon fishery, specifically in the fall and early winter season
Reply
Leave a Reply. |
AuthorShannon White Archives
October 2018
Categories
All
|
The Troutlook
A brook trout Blog
Proudly powered by Weebly