![]() Everything’s fine until the invasives move in. I’ve preached this before. Invasion by nonnative trout results in declines in native trout abundance. On the east coast, I’m talking specifically about invasion of nonnative brown and rainbow trout causing declines to native brook trout. But, what is the mechanism of decline? Is it competition? Sure. Nonnative trout can outcompete native trout for food, habitat, and sometimes even mates (enter tiger trout). Is it habitat preference? Yep, that too. Brown and rainbow trout tend to have higher thermal tolerances, and so they can live in a wider range of habitats. They can also occupy streams with altered flow regimes, higher sedimentation, and lower water quality. What about growth? We have a trifecta- nonnative trout tend to grow faster than natives. This makes nonnatives better competitors, but bigger fish also tend to produce more offspring. So, populations of nonnative trout tend to grow fast and can quickly outnumber native trout (this usually isn’t the case of rainbows in Pennsylvania, but down south rainbow trout populations are taking off and outnumbering brook trout). But, you know what else it could be? Maybe nonnative trout act as a strong selection pressure. This could cause native trout to become maladapted to their local environments because interactions with nonnative fish are acting as a stronger, more acute selection pressure than the environment. Huh? Let’s break this idea down a little. We often think about the environment as the strongest selection pressure that shapes the genetics of populations. And, that’s not wrong. Through hundreds of years of natural selection and adaptation, trout populations have accumulated the genes and outward characteristics that make them best at surviving in coldwater stream habitats. At this point in the evolutionary time scale, the amount of variation in those characteristics is really quite small. Yes, brook trout show a lot of variability, but you can still identify a brook trout from, say, a bass that has spent millions of years evolving for life in a different type of habitat. Almost every brook trout is now well-equipped for life in the typical stream environment. So, now we’re at the stage of fine-tuning the genes in populations. There’s a lot of genes that are good for life in a stream, but only a subset of those are also good for surviving a catastrophic flood. And, only another subset for devastating droughts, or unseasonably hot summers. So, natural selection is still at work. But, it has to wait for these very rare events to occur before there is large shift in the genes in a population. Until then, populations just maintain the characteristics that make them good at life in their streams. But, then life in the stream changes. A nonnative fish invades, and starts imposing a new selection pressure. Suddenly brook trout, which are often the top predator in a small stream, need to compete with another species for food and habitat. And, because presence of the nonnative species is a constant pressure that can act on native species every day and in multiple ways, it starts acting as a stronger selection pressure than rare environmental events. ![]() Think of the red line as the genetics in trout populations. Historically, back when fish were new to the animal kingdom, trout and bass probably looked very similar to one another. As evolution occurred, trout genes started becoming more adapted to stream life until there was very little variation in the genes of trout populations (relatively speaking). That was, until the nonnatives moved in.... It may sound a bit far-fetched, but a team of researchers recently completed a study to see if invasive trout could be acting as a selection pressure that overrides selection from the environment. Their work was conducted in Sweden, so in this case the invasive fish was our beloved brook trout, and the native was brown trout. What they found was that, in the presence of nonnative brook trout, brown trout developed stouter bodies, had a smaller home range, and even shifted their diets to consume more terrestrial prey. When brown trout weren’t in the presence of brook trout, they had short daily movements, high metabolic rates, and high activity.
How did brook trout cause this change? It seems to be related to a change in how brown trout live their daily life. When the only top predator, native brown trout can afford to live a high risk, high reward lifestyle. They are free to swim around, eat a lot of the best food (which are often bugs living on the stream bottom), live in the best environments, and defend quality territories from subordinate individuals. To sustain this lifestyle, fish need to have high metabolisms (to keep up with energy needs for swimming and fighting) and body shapes that are more slender, which are better for sustained swimming and foraging. Now, add nonnative brook trout to the mix and brown trout are no longer standing at the top alone. There’s less freedom to move around and find insects on the stream bottom, and so trout switch to a “sit and wait” feeding strategy. Instead of actively foraging, they become drift feeders and wait for terrestrial insects to fall into the stream near them. The addition of brook trout also means there’s generally less food available for each individual, and so slower metabolisms (which require less food to sustain basic biological function) are favored over faster metabolisms. But, slow metabolisms are associated with reduced growth, reproduction, and movement, and so body shape changes and fish develop smaller home ranges. So, the addition of a nonnative trout species results in more than just competition. It can also induce evolutionary change and alter the native species’ behavior, morphology, and physiology. Do these changes then make native species maladapted for everyday stream life? Or, could it reduce survival when there are catastrophic events? How does the presence of a nonnative change the adaptive potential of a native species? I think we need more study to really answer those questions. *Note: Content in this post is my own and may not reflect the opinion of the manuscripts' authors or the agencies they represent. I encourage you to read the manuscript, found here, so you can contribute to the discussion
1 Comment
Dennis Keefer
4/17/2020 06:28:11 am
Very interesting article, Thank-you for sharing this information. I believe that no invasive species should be stocked in Wild or Native Brook Trout Streams in Pennsylvania.
Reply
Leave a Reply. |
AuthorShannon White Archives
October 2018
Categories
All
|
The Troutlook
A brook trout Blog
Proudly powered by Weebly